Algebraic Aspects of the Discrete Kp Hierarchy
نویسندگان
چکیده
Abstract. We discuss some algebraic properties of the so-called discrete KP hierarchy, an integrable system defined on a space of infinite matrices. We give an algebraic proof of the complete integrability of the hierarchy, which we achieve by means of a factorization result for infinite matrices, that extends a result of Adler and Van Moerbeke for the case of (semi-infinite) moment matrices, and that we call a Borel decomposition.
منابع مشابه
Nonabelian KP hierarchy with Moyal algebraic coefficients
A higher dimensional analogue of the KP hierarchy is presented. Fundamental constituents of the theory are pseudo-differential operators with Moyal algebraic coefficients. The new hierarchy can be interpreted as large-N limit of multi-component (gl(N) symmetric) KP hierarchies. Actually, two different hierarchies are constructed. The first hierarchy consists of commuting flows and may be though...
متن کاملar X iv : n lin / 0 10 50 23 v 2 [ nl in . S I ] 2 J ul 2 00 1 Menelaus ’ theorem , Clifford configurations and inversive geometry of the Schwarzian KP hierarchy
It is shown that the integrable discrete Schwarzian KP (dSKP) equation which constitutes an algebraic superposition formula associated with, for instance, the Schwarzian KP hierarchy, the classical Darboux transformation and quasi-conformal mappings encapsulates nothing but a fundamental theorem of ancient Greek geometry. Thus, it is demonstrated that the connection with Menelaus' theorem and, ...
متن کاملar X iv : n lin / 0 10 50 23 v 1 [ nl in . S I ] 9 M ay 2 00 1 Menelaus ’ theorem , Clifford configurations and inversive geometry of the Schwarzian KP hierarchy
It is shown that the integrable discrete Schwarzian KP (dSKP) equation which constitutes an algebraic superposition formula associated with, for instance, the Schwarzian KP hierarchy, the classical Darboux transformation and quasi-conformal mappings encapsulates nothing but a fundamental theorem of ancient Greek geometry. Thus, it is demonstrated that the connection with Menelaus' theorem and, ...
متن کاملGeneralized KP hierarchy: Möbius Symmetry, Symmetry Constraints and Calogero-Moser System
Analytic-bilinear approach is used to study continuous and discrete non-isospectral symmetries of the generalized KP hierarchy. It is shown that Möbius symmetry transformation for the singular manifold equation leads to continuous or discrete non-isospectral symmetry of the basic (scalar or multicomponent KP) hierarchy connected with binary Bäcklund transformation. A more general class of multi...
متن کاملThe Finite Discrete KP Hierarchy and the Rational Functions
The set of all rational functions with any fixed denominator that simultaneously nullify in the infinite point is parametrized by means of a well-known integrable system: a finite dimensional version of the discrete KP hierarchy. This type of study was originated in Y. Nakamura’s works who used others integrable systems. Our work proves that the finite discrete KP hierarchy completely parametri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007